导数综合问题是高考的必考的重点内容,主要在导数解答题的的第2小问,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,其试题难度考查较大.
类型一 利用导数研究不等式证明问题
类型二 利用导数研究不等式恒成立问题
类型三 利用导数研究函数零点问题
参考答案:
【点睛】本题主要考查函数与导数及其应用等基础知识,意在考查逻辑推理、数学运算等数学核心素养,是一道有一定难度的压轴题.
【点睛】本题主要考查导数的几何意义,考查利用导数研究函数的单调性和最值,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力,难度较大.
【点睛】本题综合考查了利用导数研究函数的单调性,最值与零点,同时考查了正弦函数与正切函数的性质,试题具有一定的综合性,属于难题.
【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、函数零点、等价转化方法,考查了推理能力与计算能力,属于中档题.
【点睛】本题考查了利用导数证明函数的单调性,考查了恒成立和存在性问题,同时考查了转化思想,有一定的计算量,属于中档题.